New insights into the chemical composition ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
New insights into the chemical composition and formation mechanisms of secondary organic aerosols produced in the ozonolysis of limonene
Auteur(s) :
Jacob, F. [Auteur]
Impact de l'environnement chimique sur la santé humaine - ULR 4483 [IMPECS]
Houzel, N. [Auteur]
Genevray, P. [Auteur]
Clety, C. [Auteur]
Coeur, C. [Auteur]
Perdrix, E. [Auteur]
Alleman, L. Y. [Auteur]
Anthérieu, Sébastien [Auteur]
IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - ULR 4483
Garçon, Guillaume [Auteur]
IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - ULR 4483
Dhont, G. [Auteur]
Cuisset, A. [Auteur]
Lo-Guidice, Jean-Marc [Auteur]
IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - ULR 4483
Tomas, A. [Auteur]
Impact de l'environnement chimique sur la santé humaine - ULR 4483 [IMPECS]
Houzel, N. [Auteur]
Genevray, P. [Auteur]
Clety, C. [Auteur]
Coeur, C. [Auteur]
Perdrix, E. [Auteur]
Alleman, L. Y. [Auteur]
Anthérieu, Sébastien [Auteur]
IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - ULR 4483
Garçon, Guillaume [Auteur]
IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - ULR 4483
Dhont, G. [Auteur]
Cuisset, A. [Auteur]
Lo-Guidice, Jean-Marc [Auteur]
IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - ULR 4483
Tomas, A. [Auteur]
Titre de la revue :
Journal of Aerosol Science
Nom court de la revue :
J. Aerosol. Sci.
Numéro :
173
Pagination :
-
Date de publication :
2023-07-01
ISSN :
0021-8502
Mot(s)-clé(s) en anglais :
Terpene
Ozone
SOA
Oligomers
Nucleation
Complexation energy
Ozone
SOA
Oligomers
Nucleation
Complexation energy
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
Limonene is a wide-spread volatile organic compound in the atmosphere. Its fast reaction with ozone leads to a large range of low-volatility oxygenated products that can form aerosols through gas-to-particle conversion ...
Lire la suite >Limonene is a wide-spread volatile organic compound in the atmosphere. Its fast reaction with ozone leads to a large range of low-volatility oxygenated products that can form aerosols through gas-to-particle conversion processes. However, the physical and chemical mechanisms at the origin of particle formation are still fairly unknown despite the general importance of atmospheric aerosols towards health and climate. In the present work, we combined experimental and theoretical approaches to potentially decipher new significant mechanisms in the ozonolysis of limonene. After a thorough analysis of secondary organic aerosol (SOA) chemical composition highlighting for the first time the formation of oligomers up to heptamer structures as well as linear organic diacids, we proposed a formation mechanism involving non-covalent hydrogen bonding implying carboxylic/carbonyl/hydroxy groups. Theoretical quantum chemical calculations on dimers and trimers confirmed the stability of such structures. Thus, the present results highlight the formation of large oligomeric molecules whose atmospheric fate and health impacts need to be investigated. More generally, it is suggested that these non-covalent H-bonds play a role in the first steps of SOA formation from terpene oxidation in the atmosphere.Lire moins >
Lire la suite >Limonene is a wide-spread volatile organic compound in the atmosphere. Its fast reaction with ozone leads to a large range of low-volatility oxygenated products that can form aerosols through gas-to-particle conversion processes. However, the physical and chemical mechanisms at the origin of particle formation are still fairly unknown despite the general importance of atmospheric aerosols towards health and climate. In the present work, we combined experimental and theoretical approaches to potentially decipher new significant mechanisms in the ozonolysis of limonene. After a thorough analysis of secondary organic aerosol (SOA) chemical composition highlighting for the first time the formation of oligomers up to heptamer structures as well as linear organic diacids, we proposed a formation mechanism involving non-covalent hydrogen bonding implying carboxylic/carbonyl/hydroxy groups. Theoretical quantum chemical calculations on dimers and trimers confirmed the stability of such structures. Thus, the present results highlight the formation of large oligomeric molecules whose atmospheric fate and health impacts need to be investigated. More generally, it is suggested that these non-covalent H-bonds play a role in the first steps of SOA formation from terpene oxidation in the atmosphere.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CHU Lille
Institut Pasteur de Lille
CHU Lille
Institut Pasteur de Lille
Date de dépôt :
2023-10-20T06:45:30Z
2024-03-13T15:43:06Z
2024-03-13T15:43:06Z
Fichiers
- document
- Accès libre
- Accéder au document