Deformation Mechanisms, Microstructures, ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Deformation Mechanisms, Microstructures, and Seismic Anisotropy of Wadsleyite in the Earth's Transition Zone
Auteur(s) :
Ledoux, Estelle [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Saki, Morvarid [Auteur]
Gay, Jeffrey [Auteur]
Krug, Matthias [Auteur]
Castelnau, Olivier [Auteur]
Zhou, Wen‐Yi [Auteur]
Zhang, Jin S. [Auteur]
Chantel, Julien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Hilairet, Nadege [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bykov, Maxim [Auteur]
Bykova, Elena [Auteur]
Aprilis, Georgios [Auteur]
Svitlyk, Volodymyr [Auteur]
Garbarino, Gaston [Auteur]
Sanchez‐Valle, Carmen [Auteur]
Thomas, Christine [Auteur]
Speziale, Sergio [Auteur]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Unité Matériaux et Transformations (UMET) - UMR 8207
Saki, Morvarid [Auteur]
Gay, Jeffrey [Auteur]
Krug, Matthias [Auteur]
Castelnau, Olivier [Auteur]
Zhou, Wen‐Yi [Auteur]
Zhang, Jin S. [Auteur]
Chantel, Julien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Hilairet, Nadege [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bykov, Maxim [Auteur]
Bykova, Elena [Auteur]
Aprilis, Georgios [Auteur]
Svitlyk, Volodymyr [Auteur]
Garbarino, Gaston [Auteur]
Sanchez‐Valle, Carmen [Auteur]
Thomas, Christine [Auteur]
Speziale, Sergio [Auteur]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Titre de la revue :
Geochemistry, Geophysics, Geosystems
Nom court de la revue :
Geochem Geophys Geosyst
Numéro :
24
Pagination :
e2023GC011026
Éditeur :
American Geophysical Union (AGU)
Date de publication :
2023-11
Résumé en anglais : [en]
AbstractWadsleyite is the dominant mineral of the upper portion of the Earth's mantle transition zone (MTZ). As such, understanding plastic deformation of wadsleyite is relevant for the interpretation of observations of ...
Lire la suite >AbstractWadsleyite is the dominant mineral of the upper portion of the Earth's mantle transition zone (MTZ). As such, understanding plastic deformation of wadsleyite is relevant for the interpretation of observations of seismic signals from this region in terms of mantle flow. Despite its relevance, however, the deformation mechanisms of wadsleyite and their effects on microstructures and anisotropy are still poorly understood. Here, we present the results of new deformation experiments on polycrystalline wadsleyite at temperatures of 1400–1770 K and pressures between 12.3 and 20.3 GPa in the laser‐heated diamond anvil cell. We rely on multigrain X‐ray crystallography to follow the evolution of individual grain orientations and extract lattice preferred orientations at the sample scale at different steps of the experiments. A comparison of experimental results of our work and the literature with polycrystal plasticity simulations, indicates that ⟨111⟩{101} is the most active slip system of dislocations in wadsleyite at all investigated conditions. Secondary slip systems such as [001](010), [100](001), and [100]{0kl}, however, play a critical role in the resulting microstructures and their activity depends on both temperature and water content, from which we extract an updated deformation map of wadsleyite at MTZ conditions. Lastly, we propose several seismic anisotropy models of the upper part of the MTZ, depending on temperature, geophysical context, and levels of hydration that will be useful for the interpretation of seismic signals from the MTZ in terms of mantle flow and water content.Lire moins >
Lire la suite >AbstractWadsleyite is the dominant mineral of the upper portion of the Earth's mantle transition zone (MTZ). As such, understanding plastic deformation of wadsleyite is relevant for the interpretation of observations of seismic signals from this region in terms of mantle flow. Despite its relevance, however, the deformation mechanisms of wadsleyite and their effects on microstructures and anisotropy are still poorly understood. Here, we present the results of new deformation experiments on polycrystalline wadsleyite at temperatures of 1400–1770 K and pressures between 12.3 and 20.3 GPa in the laser‐heated diamond anvil cell. We rely on multigrain X‐ray crystallography to follow the evolution of individual grain orientations and extract lattice preferred orientations at the sample scale at different steps of the experiments. A comparison of experimental results of our work and the literature with polycrystal plasticity simulations, indicates that ⟨111⟩{101} is the most active slip system of dislocations in wadsleyite at all investigated conditions. Secondary slip systems such as [001](010), [100](001), and [100]{0kl}, however, play a critical role in the resulting microstructures and their activity depends on both temperature and water content, from which we extract an updated deformation map of wadsleyite at MTZ conditions. Lastly, we propose several seismic anisotropy models of the upper part of the MTZ, depending on temperature, geophysical context, and levels of hydration that will be useful for the interpretation of seismic signals from the MTZ in terms of mantle flow and water content.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Non spécifiée
Projet ANR :
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Matériaux Terrestres et Planétaires
Date de dépôt :
2023-11-16T08:39:09Z
Fichiers
- ledoux2023ggg.pdf
- Version éditeur
- Accès restreint
- Accéder au document