On a structure-preserving numerical method ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
On a structure-preserving numerical method for fractional Fokker-Planck equations
Auteur(s) :
Ayi, Nathalie [Auteur]
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Herda, Maxime [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Hivert, Hélène [Auteur]
Institut Camille Jordan [ICJ]
Modélisation mathématique, calcul scientifique [MMCS]
Tristani, Isabelle [Auteur]
Département de Mathématiques et Applications - ENS-PSL [DMA]
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Herda, Maxime [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Hivert, Hélène [Auteur]
Institut Camille Jordan [ICJ]
Modélisation mathématique, calcul scientifique [MMCS]
Tristani, Isabelle [Auteur]
Département de Mathématiques et Applications - ENS-PSL [DMA]
Titre de la revue :
Mathematics of Computation
Pagination :
635--693
Éditeur :
American Mathematical Society
Date de publication :
2023
ISSN :
0025-5718
Mot(s)-clé(s) en anglais :
Fractional Laplacian
Kinetic equations
Numerical methods
Hypocoercivity
Kinetic equations
Numerical methods
Hypocoercivity
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
In this paper, we introduce and analyse numerical schemes for the homogeneous and the kinetic Lévy-Fokker-Planck equation. The discretizations are designed to preserve the main features of the continuous model such as ...
Lire la suite >In this paper, we introduce and analyse numerical schemes for the homogeneous and the kinetic Lévy-Fokker-Planck equation. The discretizations are designed to preserve the main features of the continuous model such as conservation of mass, heavy-tailed equilibrium and (hypo)coercivity properties. We perform a thorough analysis of the numerical scheme and show exponential stability and convergence of the scheme. Along the way, we introduce new tools of discrete functional analysis, such as discrete nonlocal Poincaré and interpolation inequalities adapted to fractional diffusion. Our theoretical findings are illustrated and complemented with numerical simulations..Lire moins >
Lire la suite >In this paper, we introduce and analyse numerical schemes for the homogeneous and the kinetic Lévy-Fokker-Planck equation. The discretizations are designed to preserve the main features of the continuous model such as conservation of mass, heavy-tailed equilibrium and (hypo)coercivity properties. We perform a thorough analysis of the numerical scheme and show exponential stability and convergence of the scheme. Along the way, we introduce new tools of discrete functional analysis, such as discrete nonlocal Poincaré and interpolation inequalities adapted to fractional diffusion. Our theoretical findings are illustrated and complemented with numerical simulations..Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- paper-acc.pdf
- Accès libre
- Accéder au document