Parameter Setting for Evolutionary Latent ...
Document type :
Communication dans un congrès avec actes
Title :
Parameter Setting for Evolutionary Latent Class Clustering
Author(s) :
Tessier, Damien [Auteur]
Algorithmic number theory for cryptology [TANC]
Schoenauer, Marc [Auteur]
Algorithmic number theory for cryptology [TANC]
Biernacki, Christophe [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Celeux, Gilles [Auteur]
Model selection in statistical learning [SELECT]
Govaert, Gérard [Auteur]
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] [Heudiasyc]
Algorithmic number theory for cryptology [TANC]
Schoenauer, Marc [Auteur]
Algorithmic number theory for cryptology [TANC]
Biernacki, Christophe [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Celeux, Gilles [Auteur]
Model selection in statistical learning [SELECT]
Govaert, Gérard [Auteur]
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] [Heudiasyc]
Scientific editor(s) :
Lishan Kang and Yong Liu and Sanyou Y. Zeng
Conference title :
Second International Symposium, ISICA 2007
City :
Wuhan
Country :
Chine
Start date of the conference :
2007-09-21
Journal title :
LNCS
Publisher :
Springer Verlag
Publication date :
2007
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Mathématiques [math]/Statistiques [math.ST]
Mathématiques [math]/Statistiques [math.ST]
English abstract : [en]
The latent class model or multivariate multinomial mixture is a powerful model for clustering discrete data. This model is expected to be useful to represent non-homogeneous populations. It uses a conditional independence ...
Show more >The latent class model or multivariate multinomial mixture is a powerful model for clustering discrete data. This model is expected to be useful to represent non-homogeneous populations. It uses a conditional independence assumption given the latent class to which a statistical unit is belonging. However, it leads to a criterion that proves difficult to optimise by the standard approach based on the EM algorithm. An Evolutionary Algorithms is designed to tackle this discrete optimisation problem, and an extensive parameter study on a large artificial dataset allows to derive stable parameters. Those parameters are then validated on other artificial datasets, as well as on some well-known real data: the Evolutionary Algorithm performs repeatedly better than other standard clustering techniques on the same data.Show less >
Show more >The latent class model or multivariate multinomial mixture is a powerful model for clustering discrete data. This model is expected to be useful to represent non-homogeneous populations. It uses a conditional independence assumption given the latent class to which a statistical unit is belonging. However, it leads to a criterion that proves difficult to optimise by the standard approach based on the EM algorithm. An Evolutionary Algorithms is designed to tackle this discrete optimisation problem, and an extensive parameter study on a large artificial dataset allows to derive stable parameters. Those parameters are then validated on other artificial datasets, as well as on some well-known real data: the Evolutionary Algorithm performs repeatedly better than other standard clustering techniques on the same data.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- latentEA.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- latentEA.pdf
- Open access
- Access the document