Prebiotic Supplementation during Lactation ...
Document type :
Article dans une revue scientifique: Article original
DOI :
PMID :
Permalink :
Title :
Prebiotic Supplementation during Lactation Affects Microbial Colonization in Postnatal-Growth-Restricted Mice.
Author(s) :
Marousez, Lucie [Auteur]
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Tran, Léa Chantal [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Micours, Edwina [Auteur]
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Antoine, Matthieu [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Gottrand, fréderic [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Lesage, Jean [Auteur]
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Ley, Delphine [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Institut de Recherche Translationnelle sur l'Inflammation (INFINITE) - U1286
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Tran, Léa Chantal [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Micours, Edwina [Auteur]
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Antoine, Matthieu [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Gottrand, fréderic [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Lesage, Jean [Auteur]
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Ley, Delphine [Auteur]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Institut de Recherche Translationnelle sur l'Inflammation (INFINITE) - U1286
Journal title :
Nutrients
Abbreviated title :
Nutrients
Volume number :
15
Publication date :
2023-06-29
ISSN :
2072-6643
English keyword(s) :
prebiotic fiber
PNGR
maturation
microbial colonization
short-chain fatty acids
PNGR
maturation
microbial colonization
short-chain fatty acids
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
Background: An inadequate perinatal nutritional environment can alter the maturation of the intestinal barrier and promote long-term pathologies such as metabolic syndrome or chronic intestinal diseases. The intestinal ...
Show more >Background: An inadequate perinatal nutritional environment can alter the maturation of the intestinal barrier and promote long-term pathologies such as metabolic syndrome or chronic intestinal diseases. The intestinal microbiota seems to play a determining role in the development of the intestinal barrier. In the present study, we investigated the impact of consuming an early postnatal prebiotic fiber (PF) on growth, intestinal morphology and the microbiota at weaning in postnatal-growth-restricted mice (PNGR). Methods: Large litters (15 pups/mother) were generated from FVB/NRj mice to induce PNGR at postnatal day 4 (PN4) and compared to control litters (CTRL, 8 pups/mother). PF (a resistant dextrin) or water was orally administered once daily to the pups from PN8 to PN20 (3.5 g/kg/day). Intestinal morphology was evaluated at weaning (PN21) using the ileum and colon. Microbial colonization and short-chain fatty acid (SCFA) production were investigated using fecal and cecal contents. Results: At weaning, the PNGR mice showed decreased body weight and ileal crypt depth compared to the CTRL. The PNGR microbiota was associated with decreased proportions of the Lachnospiraceae and Oscillospiraceae families and the presence of the Akkermansia family and Enterococcus genus compared to the CTRL pups. The propionate concentrations were also increased with PNGR. While PF supplementation did not impact intestinal morphology in the PNGR pups, the proportions of the Bacteroides and Parabacteroides genera were enriched, but the proportion of the Proteobacteria phylum was reduced. In the CTRL pups, the Akkermansia genus (Verrucomicrobiota phylum) was present in the PF-supplemented CTRL pups compared to the water-supplemented ones. Conclusions: PNGR alters intestinal crypt maturation in the ileum at weaning and gut microbiota colonization. Our data support the notion that PF supplementation might improve gut microbiota establishment during the early postnatal period.Show less >
Show more >Background: An inadequate perinatal nutritional environment can alter the maturation of the intestinal barrier and promote long-term pathologies such as metabolic syndrome or chronic intestinal diseases. The intestinal microbiota seems to play a determining role in the development of the intestinal barrier. In the present study, we investigated the impact of consuming an early postnatal prebiotic fiber (PF) on growth, intestinal morphology and the microbiota at weaning in postnatal-growth-restricted mice (PNGR). Methods: Large litters (15 pups/mother) were generated from FVB/NRj mice to induce PNGR at postnatal day 4 (PN4) and compared to control litters (CTRL, 8 pups/mother). PF (a resistant dextrin) or water was orally administered once daily to the pups from PN8 to PN20 (3.5 g/kg/day). Intestinal morphology was evaluated at weaning (PN21) using the ileum and colon. Microbial colonization and short-chain fatty acid (SCFA) production were investigated using fecal and cecal contents. Results: At weaning, the PNGR mice showed decreased body weight and ileal crypt depth compared to the CTRL. The PNGR microbiota was associated with decreased proportions of the Lachnospiraceae and Oscillospiraceae families and the presence of the Akkermansia family and Enterococcus genus compared to the CTRL pups. The propionate concentrations were also increased with PNGR. While PF supplementation did not impact intestinal morphology in the PNGR pups, the proportions of the Bacteroides and Parabacteroides genera were enriched, but the proportion of the Proteobacteria phylum was reduced. In the CTRL pups, the Akkermansia genus (Verrucomicrobiota phylum) was present in the PF-supplemented CTRL pups compared to the water-supplemented ones. Conclusions: PNGR alters intestinal crypt maturation in the ileum at weaning and gut microbiota colonization. Our data support the notion that PF supplementation might improve gut microbiota establishment during the early postnatal period.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
Inserm
CHU Lille
Inserm
CHU Lille
Submission date :
2024-01-11T22:30:48Z
2024-03-04T16:02:57Z
2024-03-04T16:02:57Z
Files
- nutrients-15-02771.pdf
- Non spécifié
- Open access
- Access the document