Chromosome folding and prophage activation ...
Type de document :
Article dans une revue scientifique: Article original
PMID :
URL permanente :
Titre :
Chromosome folding and prophage activation reveal specific genomic architecture for intestinal bacteria.
Auteur(s) :
Lamy-Besnier, Quentin [Auteur]
Bactériophage, bactérie, hôte - Bacteriophage, bacterium, host
Bignaud, Amaury [Auteur]
Collège Doctoral
Régulation spatiale des Génomes - Spatial Regulation of Genomes
Garneau, Julian R. [Auteur]
Biomics (plateforme technologique)
Titecat, Marie [Auteur]
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Bactériophage, bactérie, hôte - Bacteriophage, bacterium, host
Conti, Devon E. [Auteur]
Collège Doctoral
Bactériophage, bactérie, hôte - Bacteriophage, bacterium, host
Régulation spatiale des Génomes - Spatial Regulation of Genomes
Von Strempel, Alexandra [Auteur]
Max Von Pettenkofer Institute [MVP]
Monot, Marc [Auteur]
Biomics (plateforme technologique)
Stecher, Bärbel [Auteur]
Max Von Pettenkofer Institute [MVP]
German Center for Infection Research, Partnersite Munich [DZIF]
Koszul, Romain [Auteur]
Régulation spatiale des Génomes - Spatial Regulation of Genomes
Debarbieux, Laurent [Auteur]
Bactériophage, bactérie, hôte - Bacteriophage, bacterium, host
Marbouty, Martial [Auteur]
Régulation spatiale des Génomes - Spatial Regulation of Genomes
Bactériophage, bactérie, hôte - Bacteriophage, bacterium, host
Bignaud, Amaury [Auteur]
Collège Doctoral
Régulation spatiale des Génomes - Spatial Regulation of Genomes
Garneau, Julian R. [Auteur]
Biomics (plateforme technologique)
Titecat, Marie [Auteur]
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Bactériophage, bactérie, hôte - Bacteriophage, bacterium, host
Conti, Devon E. [Auteur]
Collège Doctoral
Bactériophage, bactérie, hôte - Bacteriophage, bacterium, host
Régulation spatiale des Génomes - Spatial Regulation of Genomes
Von Strempel, Alexandra [Auteur]
Max Von Pettenkofer Institute [MVP]
Monot, Marc [Auteur]
Biomics (plateforme technologique)
Stecher, Bärbel [Auteur]
Max Von Pettenkofer Institute [MVP]
German Center for Infection Research, Partnersite Munich [DZIF]
Koszul, Romain [Auteur]
Régulation spatiale des Génomes - Spatial Regulation of Genomes
Debarbieux, Laurent [Auteur]
Bactériophage, bactérie, hôte - Bacteriophage, bacterium, host
Marbouty, Martial [Auteur]
Régulation spatiale des Génomes - Spatial Regulation of Genomes
Titre de la revue :
Microbiome
Nom court de la revue :
Microbiome
Numéro :
11
Pagination :
111
Date de publication :
2023-05-21
ISSN :
2049-2618
Mot(s)-clé(s) en anglais :
Phages
Gut
HiC
Virome
OMM12
3D signatures
Gut
HiC
Virome
OMM12
3D signatures
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
Background
Bacteria and their viruses, bacteriophages, are the most abundant entities of the gut microbiota, a complex community of microorganisms associated with human health and disease. In this ecosystem, the ...
Lire la suite >Background Bacteria and their viruses, bacteriophages, are the most abundant entities of the gut microbiota, a complex community of microorganisms associated with human health and disease. In this ecosystem, the interactions between these two key components are still largely unknown. In particular, the impact of the gut environment on bacteria and their associated prophages is yet to be deciphered. Results To gain insight into the activity of lysogenic bacteriophages within the context of their host genomes, we performed proximity ligation-based sequencing (Hi-C) in both in vitro and in vivo conditions on the 12 bacterial strains of the OMM12 synthetic bacterial community stably associated within mice gut (gnotobiotic mouse line OMM12). High-resolution contact maps of the chromosome 3D organization of the bacterial genomes revealed a wide diversity of architectures, differences between environments, and an overall stability over time in the gut of mice. The DNA contacts pointed at 3D signatures of prophages leading to 16 of them being predicted as functional. We also identified circularization signals and observed different 3D patterns between in vitro and in vivo conditions. Concurrent virome analysis showed that 11 of these prophages produced viral particles and that OMM12 mice do not carry other intestinal viruses. Conclusions The precise identification by Hi-C of functional and active prophages within bacterial communities will unlock the study of interactions between bacteriophages and bacteria across conditions (healthy vs disease).Lire moins >
Lire la suite >Background Bacteria and their viruses, bacteriophages, are the most abundant entities of the gut microbiota, a complex community of microorganisms associated with human health and disease. In this ecosystem, the interactions between these two key components are still largely unknown. In particular, the impact of the gut environment on bacteria and their associated prophages is yet to be deciphered. Results To gain insight into the activity of lysogenic bacteriophages within the context of their host genomes, we performed proximity ligation-based sequencing (Hi-C) in both in vitro and in vivo conditions on the 12 bacterial strains of the OMM12 synthetic bacterial community stably associated within mice gut (gnotobiotic mouse line OMM12). High-resolution contact maps of the chromosome 3D organization of the bacterial genomes revealed a wide diversity of architectures, differences between environments, and an overall stability over time in the gut of mice. The DNA contacts pointed at 3D signatures of prophages leading to 16 of them being predicted as functional. We also identified circularization signals and observed different 3D patterns between in vitro and in vivo conditions. Concurrent virome analysis showed that 11 of these prophages produced viral particles and that OMM12 mice do not carry other intestinal viruses. Conclusions The precise identification by Hi-C of functional and active prophages within bacterial communities will unlock the study of interactions between bacteriophages and bacteria across conditions (healthy vs disease).Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
Inserm
CHU Lille
Inserm
CHU Lille
Date de dépôt :
2024-01-11T22:37:56Z
2024-03-06T09:43:26Z
2024-03-06T09:44:23Z
2024-03-06T09:43:26Z
2024-03-06T09:44:23Z
Fichiers
- s40168-023-01541-x.pdf
- Non spécifié
- Accès libre
- Accéder au document