From Characterization to Discovery: ...
Type de document :
Article dans une revue scientifique: Article de synthèse/Review paper
DOI :
URL permanente :
Titre :
From Characterization to Discovery: Artificial Intelligence, Machine Learning and High-Throughput Experiments for Heterogeneous Catalyst Design
Auteur(s) :
Benavides-Hernández, J. [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dumeignil, Franck [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Benavides-Hernández, J. [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dumeignil, Franck [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Benavides-Hernández, J. [Auteur]
Titre de la revue :
ACS Catalysis
Nom court de la revue :
ACS Catal.
Numéro :
14
Pagination :
11749–11779
Date de publication :
2024-11-18
ISSN :
2155-5435
Mot(s)-clé(s) en anglais :
artificial intelligence
machine learning
high-throughput experimentation
heterogeneous catalysts
catalyst design
deep learning
optimization
high-throughput screening
machine learning
high-throughput experimentation
heterogeneous catalysts
catalyst design
deep learning
optimization
high-throughput screening
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
This review paper delves into synergistic integration of artificial intelligence (AI) and machine learning (ML) with high-throughput experimentation (HTE) in the field of heterogeneous catalysis, presenting a broad spectrum ...
Lire la suite >This review paper delves into synergistic integration of artificial intelligence (AI) and machine learning (ML) with high-throughput experimentation (HTE) in the field of heterogeneous catalysis, presenting a broad spectrum of contemporary methodologies and innovations. We methodically segmented the text into three core areas: catalyst characterization, data-driven exploitation, and data-driven discovery. In the catalyst characterization part, we outline current and prospective techniques used for HTE and how AI-driven strategies can streamline or automate their analysis. The data-driven exploitation part is divided into themes, strategies, and techniques that offer flexibility for either modular application or creation of customized solutions. In the data-driven exploration part we present applications that enable exploration of areas outside the experimentally tested chemical space, incorporating a section on computational methods for identifying new prospects. The review concludes by addressing the current limitations within the field and suggesting possible avenues for future research.Lire moins >
Lire la suite >This review paper delves into synergistic integration of artificial intelligence (AI) and machine learning (ML) with high-throughput experimentation (HTE) in the field of heterogeneous catalysis, presenting a broad spectrum of contemporary methodologies and innovations. We methodically segmented the text into three core areas: catalyst characterization, data-driven exploitation, and data-driven discovery. In the catalyst characterization part, we outline current and prospective techniques used for HTE and how AI-driven strategies can streamline or automate their analysis. The data-driven exploitation part is divided into themes, strategies, and techniques that offer flexibility for either modular application or creation of customized solutions. In the data-driven exploration part we present applications that enable exploration of areas outside the experimentally tested chemical space, incorporating a section on computational methods for identifying new prospects. The review concludes by addressing the current limitations within the field and suggesting possible avenues for future research.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Date de dépôt :
2024-11-20T22:03:55Z
2024-11-29T09:30:07Z
2024-11-29T09:30:07Z