Interaction of fumigaclavine C with High ...
Type de document :
Article dans une revue scientifique: Article original
PMID :
URL permanente :
Titre :
Interaction of fumigaclavine C with High Mobility Group Box 1 protein (HMGB1) and its DNA complex: A computational approach.
Auteur(s) :
Bailly, Christian [Auteur]
Oncowitan [Wasquehal]
Vergoten, Gerard [Auteur]
Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Oncowitan [Wasquehal]
Vergoten, Gerard [Auteur]

Institute for Translational Research in Inflammation - U 1286 [INFINITE]
Titre de la revue :
Comput Biol Chem
Nom court de la revue :
Comput Biol Chem
Numéro :
89
Pagination :
107409
Date de publication :
2020-11-11
ISSN :
1476-928X
Mot(s)-clé(s) en anglais :
HMG-B1
Fumigaclavine
Natural product
Drug-protein binding
Molecular modelling
Fumigaclavine
Natural product
Drug-protein binding
Molecular modelling
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
The fumigaclavines represent a small group of clavine-type alkaloids produced by the pathogenic fungus Aspergillus fumigatus. The leading compound in the family is fumigaclavine C (Fm-C) endowed with potent anti-inflammatory ...
Lire la suite >The fumigaclavines represent a small group of clavine-type alkaloids produced by the pathogenic fungus Aspergillus fumigatus. The leading compound in the family is fumigaclavine C (Fm-C) endowed with potent anti-inflammatory properties. Fm-C represses the production of several inflammatory cytokines in cells via a mechanism implicating a reduced nucleo-cytoplasmic transport and extracellular export of the alarmin protein HMGB1, through a direct drug-protein interaction, and a down-regulation of HMGB1 expression. We have investigated the interaction of Fm-C with HMGB1 using two complementary forms of the HMG-box protein, in its free and DNA-bound configurations, using molecular modeling. We identified up to six potential binding sites for Fm-C in the vicinity of the B-box of HMGB1, with the site designated Lys-103 being the most favored and maintained when the protein is bound to a 16-base pair DNA oligonucleotide. Structure-binding relationships have been explored through the comparison of the HMGB1-binding properties of fumigaclavines A, B and C, and the related alkaloid lysergic acid diethylamide (LSD). Both the C-9 acetyl group and C-2 dimethylallyl side chain of Fm-C contribute importantly to the protein interaction. LSD appears also to form stable complexes with free HMGB1. According to the calculated empirical energies of interaction (ΔE), the compounds rank in the order: Fm-C ∼ LSD < Fm-A < Fm-B, for binding to HMGB1. The study helps to better comprehend the mechanism of action of Fm-C, and its anti-inflammatory and anticancer properties.Lire moins >
Lire la suite >The fumigaclavines represent a small group of clavine-type alkaloids produced by the pathogenic fungus Aspergillus fumigatus. The leading compound in the family is fumigaclavine C (Fm-C) endowed with potent anti-inflammatory properties. Fm-C represses the production of several inflammatory cytokines in cells via a mechanism implicating a reduced nucleo-cytoplasmic transport and extracellular export of the alarmin protein HMGB1, through a direct drug-protein interaction, and a down-regulation of HMGB1 expression. We have investigated the interaction of Fm-C with HMGB1 using two complementary forms of the HMG-box protein, in its free and DNA-bound configurations, using molecular modeling. We identified up to six potential binding sites for Fm-C in the vicinity of the B-box of HMGB1, with the site designated Lys-103 being the most favored and maintained when the protein is bound to a 16-base pair DNA oligonucleotide. Structure-binding relationships have been explored through the comparison of the HMGB1-binding properties of fumigaclavines A, B and C, and the related alkaloid lysergic acid diethylamide (LSD). Both the C-9 acetyl group and C-2 dimethylallyl side chain of Fm-C contribute importantly to the protein interaction. LSD appears also to form stable complexes with free HMGB1. According to the calculated empirical energies of interaction (ΔE), the compounds rank in the order: Fm-C ∼ LSD < Fm-A < Fm-B, for binding to HMGB1. The study helps to better comprehend the mechanism of action of Fm-C, and its anti-inflammatory and anticancer properties.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
Inserm
CHU Lille
Inserm
CHU Lille
Date de dépôt :
2025-03-14T22:12:33Z
2025-03-26T08:50:45Z
2025-03-26T08:50:45Z