Deciphering the origin of high electrochemical ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
PMID :
URL permanente :
Titre :
Deciphering the origin of high electrochemical performance in a novel ti-substituted p2/o3 biphasic cathode for sodium-ion batteries
Auteur(s) :
Hu, Bei [Auteur]
East China Normal University [Shangaï] [ECNU]
Geng, Fushan [Auteur]
East China Normal University [Shangaï] [ECNU]
Zhao, Chong [Auteur]
East China Normal University [Shangaï] [ECNU]
Doumert, Bertrand [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Trebosc, Julien [Auteur]
Lafon, Olivier [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Li, Chao [Auteur]
East China Normal University [Shangaï] [ECNU]
Shen, Ming [Auteur]
East China Normal University [Shangaï] [ECNU]
Hu, Bingwen [Auteur]
East China Normal University [Shangaï] [ECNU]
East China Normal University [Shangaï] [ECNU]
Geng, Fushan [Auteur]
East China Normal University [Shangaï] [ECNU]
Zhao, Chong [Auteur]
East China Normal University [Shangaï] [ECNU]
Doumert, Bertrand [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Trebosc, Julien [Auteur]

Lafon, Olivier [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Li, Chao [Auteur]
East China Normal University [Shangaï] [ECNU]
Shen, Ming [Auteur]
East China Normal University [Shangaï] [ECNU]
Hu, Bingwen [Auteur]
East China Normal University [Shangaï] [ECNU]
Titre de la revue :
ACS Applied Materials & Interfaces
Nom court de la revue :
ACS Appl Mater Interfaces
Numéro :
12
Pagination :
41485–41494
Éditeur :
American Chemical Society (ACS)
Date de publication :
2020-08-24
ISSN :
1944-8252
Mot(s)-clé(s) en anglais :
Mn charge compensation
oxygen redox
Ti-substitution
P2/O3-type cathode material
structure stability
oxygen redox
Ti-substitution
P2/O3-type cathode material
structure stability
Discipline(s) HAL :
Chimie/Catalyse
Chimie/Chimie inorganique
Chimie/Chimie inorganique
Résumé en anglais : [en]
The layered Mn-based oxides (NaxMnO2), which is one of the most promising cathode families for rechargeable sodium-ion batteries, have received considerable attention because of their tunable electrochemical performances ...
Lire la suite >The layered Mn-based oxides (NaxMnO2), which is one of the most promising cathode families for rechargeable sodium-ion batteries, have received considerable attention because of their tunable electrochemical performances and low costs. Herein, a novel P2/O3 intergrown Li-containing Na0.8Li0.27Mn0.68Ti0.05O2 cathode material prepared by Ti-substitution into Mn-site is reported. Benefiting from the synergistic effects of the biphasic composite structure and inactive d0 element substitution, this P2/O3 electrode exhibits high initial charge/discharge capacity and excellent cycling performance. The combination of different characterization techniques including solid-state NMR, electron paramagnetic resonance, X-ray adsorption spectroscopy, and high-resolution transmission electron microscopy gives insights into the local electronic environment, the redox chemistry, and also the microstructure rigidity of these cathode materials upon cycling. On the basis of comprehensive comparison with the Ti-free P2/O3-Na0.8Li0.27Mn0.73O2, the observed improvement on the electrochemical performance is primarily attributed to the mitigation of notorious Mn3+/Mn4+ redox and the enhanced stability of the oxygen charge compensation behavior. From the viewpoint of structure evolution, Ti-substitution restrains the Li+ loss and irreversible structural degradation during cycling. This study provides an in-depth understanding of the electronic and crystal structure evolutions after inactive d0 element substitution and may shed light on the rational design of high-performance P2/O3 biphasic Mn-based layered cathodes.Lire moins >
Lire la suite >The layered Mn-based oxides (NaxMnO2), which is one of the most promising cathode families for rechargeable sodium-ion batteries, have received considerable attention because of their tunable electrochemical performances and low costs. Herein, a novel P2/O3 intergrown Li-containing Na0.8Li0.27Mn0.68Ti0.05O2 cathode material prepared by Ti-substitution into Mn-site is reported. Benefiting from the synergistic effects of the biphasic composite structure and inactive d0 element substitution, this P2/O3 electrode exhibits high initial charge/discharge capacity and excellent cycling performance. The combination of different characterization techniques including solid-state NMR, electron paramagnetic resonance, X-ray adsorption spectroscopy, and high-resolution transmission electron microscopy gives insights into the local electronic environment, the redox chemistry, and also the microstructure rigidity of these cathode materials upon cycling. On the basis of comprehensive comparison with the Ti-free P2/O3-Na0.8Li0.27Mn0.73O2, the observed improvement on the electrochemical performance is primarily attributed to the mitigation of notorious Mn3+/Mn4+ redox and the enhanced stability of the oxygen charge compensation behavior. From the viewpoint of structure evolution, Ti-substitution restrains the Li+ loss and irreversible structural degradation during cycling. This study provides an in-depth understanding of the electronic and crystal structure evolutions after inactive d0 element substitution and may shed light on the rational design of high-performance P2/O3 biphasic Mn-based layered cathodes.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Autre(s) projet(s) ou source(s) de financement :
National Natural Science Foundation of China (Nos. 21902049, 21703068, 21872055, and 21874045)
Shanghai Sailing Program (19YF1413000)
Fundamental Research Funds for the Central Universities
Graduate students overseas visiting project of East China Normal University
Chevreul Institute (FR 2638)
Ministère de l’Enseignement Supérieur de la Recherche et de l’Innovation
Région Hauts de France
FEDER
Institut Universitaire de France (IUF)
Shanghai Sailing Program (19YF1413000)
Fundamental Research Funds for the Central Universities
Graduate students overseas visiting project of East China Normal University
Chevreul Institute (FR 2638)
Ministère de l’Enseignement Supérieur de la Recherche et de l’Innovation
Région Hauts de France
FEDER
Institut Universitaire de France (IUF)
Établissement(s) :
CNRS
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Collections :
Équipe(s) de recherche :
RMN et matériaux inorganiques (RM2I)
Date de dépôt :
2022-03-02T07:14:59Z
2023-12-07T18:51:13Z
2023-12-07T18:51:13Z
Fichiers
- P2-O3_Ti_post-print.pdf
- Version finale acceptée pour publication (postprint)
- Accès libre
- Accéder au document