Multivalued Memory via Freezing of Super-Hard ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
PMID :
URL permanente :
Titre :
Multivalued Memory via Freezing of Super-Hard Magnetic Domains in a Quasi 2D-Magnet.
Auteur(s) :
Mentre, Olivier [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Leclercq, Bastien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Arevalo Lopez, Angel [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Pautrat, Alain [Auteur]
Laboratoire de cristallographie et sciences des matériaux [CRISMAT]
Petit, Sylvain [Auteur]
CEA- Saclay [CEA]
Minaud, Claire [Auteur]
Daviero-Minaud, Sylvie [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Hovhannisyan, R. A. [Auteur]
Stolyarov, V. S. [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Leclercq, Bastien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Arevalo Lopez, Angel [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Pautrat, Alain [Auteur]
Laboratoire de cristallographie et sciences des matériaux [CRISMAT]
Petit, Sylvain [Auteur]
CEA- Saclay [CEA]
Minaud, Claire [Auteur]
Daviero-Minaud, Sylvie [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Hovhannisyan, R. A. [Auteur]
Stolyarov, V. S. [Auteur]
Titre de la revue :
Small Methods
Numéro :
7
Pagination :
e2300491
Date de publication :
2023-07-25
ISSN :
2366-9608
Discipline(s) HAL :
Chimie/Matériaux
Résumé en anglais : [en]
The design of high-density non-volatile memories is a long-standing dream, limited by conventional storage “0” or “1” bits. An alternative paradigm exists in which regions within candidate materials can be magnetized to ...
Lire la suite >The design of high-density non-volatile memories is a long-standing dream, limited by conventional storage “0” or “1” bits. An alternative paradigm exists in which regions within candidate materials can be magnetized to intermediate values between the saturation limits. In principle, this paves the way to multivalued bits, vastly increasing storage density. Single-molecule magnets, are good examples offering transitions between intramolecular quantum levels, but require ultra-low temperatures and limited relaxation time between magnetization states. It is showed here that the quasi 2D-Ising compound BaFe2(PO4)2 overcomes these limitations. The combination of giant magneto-crystalline anisotropy, strong ferromagnetic exchange, and strong intrinsic pinning creates remarkably narrow magnetic domain walls, collectively freezing under Tf ≈15 K. This results in a transition from a soft to a super-hard magnet (coercive force > 14 T). Any magnetization can then be printed and robustly protected from external fields with an energy barrier >9T at 2 K.Lire moins >
Lire la suite >The design of high-density non-volatile memories is a long-standing dream, limited by conventional storage “0” or “1” bits. An alternative paradigm exists in which regions within candidate materials can be magnetized to intermediate values between the saturation limits. In principle, this paves the way to multivalued bits, vastly increasing storage density. Single-molecule magnets, are good examples offering transitions between intramolecular quantum levels, but require ultra-low temperatures and limited relaxation time between magnetization states. It is showed here that the quasi 2D-Ising compound BaFe2(PO4)2 overcomes these limitations. The combination of giant magneto-crystalline anisotropy, strong ferromagnetic exchange, and strong intrinsic pinning creates remarkably narrow magnetic domain walls, collectively freezing under Tf ≈15 K. This results in a transition from a soft to a super-hard magnet (coercive force > 14 T). Any magnetization can then be printed and robustly protected from external fields with an energy barrier >9T at 2 K.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Date de dépôt :
2023-11-14T01:02:53Z
2023-11-25T21:02:52Z
2023-11-25T21:02:52Z